Phương trình lượng giác và Công thức nghiệm phương trình lượng giác

Cùng tìm hiểu phương trình lượng giác qua bài viết cùng bài giảng dưới đây nhé!.

Mục lục

  • 1 Các dạng phương trình lượng giác
    • 1.1 Phương trình sinx = m
    • 1.2 Phương trình cosx = m
    • 1.3 Phương trình tanx = m
    • 1.4 Phương trình cot(x) = m
  • 2 Phương trình lượng giác chứa tham số
    • 2.1 Phương pháp 1: Đưa về dạng phương trình lượng giác cơ bản
    • 2.2 Phương pháp 2: Sử dụng phương pháp khảo sát

Các dạng phương trình lượng giác

Phương trình sinx = m

Nếu (left | m right |)>1: Phương trình vô nghiệm

Nếu (left | m right |) (leq) 1 thì chọn 1 góc (alpha) sao cho (sin alpha = m).

Khi đó nghiệm của phương trình là (left{begin{matrix} x = alpha + k2pi & \ x = pi – alpha +k2pi & end{matrix}right.) với (k epsilon mathbb{Z})

Phương trình cosx = m

Nếu (left | m right |)>1: Phương trình vô nghiệm

Nếu (left | m right |) (leq) 1 thì chọn 1 góc (alpha) sao cho (cos alpha = m) .

Khi đó nghiệm của phương trình là (left{begin{matrix} x = alpha + k2pi & \ x = – alpha + k2pi & end{matrix}right.) với (k epsilon mathbb{Z})

Phương trình tanx = m

Chọn góc (alpha) sao cho (tan alpha = m).

Khi đó phương trình luôn có nghiệm với mọi m.

(tan x = tan alpha Leftrightarrow x = alpha + kpi (k epsilon mathbb{Z}))

Hoặc (tan x = m Leftrightarrow m – arctan m + kpi) (m bất kỳ)

Chú ý: (tan x = 0 Leftrightarrow x = kpi), (tan x) không xác định khi (x = frac{pi }{2} + kpi)

Phương trình cot(x) = m

Chọn góc (alpha) sao cho (csc alpha = m).

Khi đó phương trình luôn có nghiệm với mọi m.

(csc x = csc alpha Leftrightarrow x = alpha + kpi (kepsilon mathbb{Z})) Hoặc (cot x = m Leftrightarrow m = textrm{arccsc}m + kpi) (m bất kỳ)

Chú ý: (csc x = 0 Leftrightarrow x = frac{pi }{2} + kpi),

(csc x) không xác định khi (x = kpi)

Vòng tròn lượng giác cho các bạn tham khảo:

phương trình lượng giác và hình ảnh vòng tròn lượng giác

Phương trình lượng giác chứa tham số

Phương trình lượng giác chứa tham số dạng (asin x + b cos x = c) có nghiệm khi và chỉ khi (a^{2} + b^{2} geq c^{2})

Để giải phương trình lượng giác chứa tham số có hai cách làm phổ biến là:

  • Thứ nhất đưa về PT lượng giác cơ bản
  • Thứ hai sử dụng phương pháp khảo sát hàm

Phương pháp 1: Đưa về dạng phương trình lượng giác cơ bản

  • Điều kiện có nghiệm của phương trình lượng giác
  • Kết hợp những kiến thức đã học đưa ra các điều kiện làm cho phương trình dạng cơ bản có nghiệm thỏa điều kiện cho trước

Ví dụ: Xác định m để phương trình ((m^{2} – 3m + 2)cos ^{2}x = m(m-1)) (1) có nghiệm.

Cách giải

((1)Leftrightarrow (m-1)(m-2)cos ^{2}x = m (m-1)) (1’)

Khi m = 1: (1) luôn đúng với mọi (xepsilon mathbb{R})

Khi m = 2: (1) vô nghiệm

Khi (mneq 1; mneq 2) thì:

(1’) (Leftrightarrow (m-2)cos ^{2}x = m Leftrightarrow cos ^{2}x = frac{m}{m-2})  (2)

Khi đó (2) có nghiệm (Leftrightarrow 0leq frac{m}{m-2}leq 1Leftrightarrow mleq 0)

Vậy (1) có nghiệm khi và chỉ khi m = 1, (mleq 0)

Phương pháp 2: Sử dụng phương pháp khảo sát

Giả sử phương trình lượng giác chứa tham số m có dạng: g(x,m) = 0 (1). Xác định m để phương trình (1) có nghiệm (xepsilon D)

Phương pháp:

  • Đặt ẩn phụ t = h(x) trong đó h(x) là 1 biểu thức thích hợp trong phương trình (1)
  • Tìm miền giá trị (điều kiện) của t trên tập xác định D. Gọi miền giá trị của t là D1
  • Đưa phương trình (1) về phương trình f(m,t) = 0
  • Tính f’(m, t) và lập bảng biến thiên trên miền D1
  • Căn cứ vào bảng biến thiên và kết quả của bước 4 mà các định giá trị của m.

Trên đây là bài tổng hợp kiến thức về phương trình lượng giác của DINHNGHIA.VN. Nếu có góp ý hay băn khoăn thắc mắc gì các bạn bình luận bên dưới nha.Cảm ơn các bạn! Nếu thấy hay thì chia sẻ nhé ^^

Xem chi tiết qua bài giảng dưới đây nhé:



(Nguồn: www.youtube.com)

Please follow and like us:
error

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *